화학Ⅱ 정답

1	4	2	2	3	3	4	2	5	5
6	3	7	2	8	1	9	3	10	3
11	1	12	1	13	2	14	3	15	1
16	5	17	4	18	(5)	19	4	20	1

화학Ⅱ 해설

1. [출제의도] 온도에 따른 평형 이동 적용하기

흡열 반응에서 온도를 증가시키면 정반응 쪽으로 평형이 이동하며, 반응물의 농도는 감소하고 생성물의 농도는 증가한다.

2. [출제의도] 반응 엔탈피 이해하기

 $NF_3(g)$ 4 mol이 분해되는 반응의 반응 엔탈피는 -2a이다.

3. [출제의도] 반응 속도에 영향을 미치는 요인

정반응은 발열 반응이고, 역반응의 활성화 에너지는 (200+11) kJ/mol이다. 촉매는 반응 엔탈피에 영향을 주지 않는다.

4. [출제의도] 이상 기체 방정식 적용하기

 $n \propto rac{PV}{T}$ 이므로, 용기에서 기체의 양(mol)을 각각 2N, 0.5N, 3N이라고 하면, 세 번째 용기에서 A와 B의 양(mol)은 각각 2N, N이므로 x = 2이다.

5. [출제의도] 고체 결정 구조 자료 이해하기

X는 $I_2(s)$, Y는 C(s, 흑 e), Z는 Al(s)이다. Y는 공유 결정이고, Z의 단위 세포에 포함된 원자 수는 4이다.

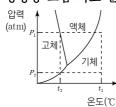
6. [출제의도] 반응 속도에 영향을 미치는 요인 문제

반응 속도는 I > I이므로 X(s)는 정촉매이다. 반응의 반감기는 $I > III이므로 <math>T_2 > T_1$ 이다. $0 \sim 10 \text{ s}$ 동안의 평균 반응 속도는 Ⅱ에서가 Ⅲ에서의 2배이다.

7. [출제의도] 기체의 반응 자료 분석하기

일정한 온도에서 $n \propto PV$ 이다. 반응 전 A(g), B(g)의 양을 각각 $2N \mod, PN \mod$ 이라 하면,

	2A(g)	+ $B(g)$	\rightarrow	2C(g)
반응 전(mol)	2N	PN		0
반응(mol)	-2PN	-PN		+2PN
반응 후(mol)	(2-2P)N	0		2PN
	4		4	


 $2PV = 2V \times \frac{4}{5}$ 이므로, 따라서 $P = \frac{4}{5}$ 이다.

8. [출제의도] 묽은 용액의 총괄성 결론 도출하기

(가)와 (나)에서
$$\frac{w}{M_A} + \frac{1.5w}{M_B} = \frac{2w}{M_A} + \frac{w}{M_B}$$
이므로

 $\frac{M_B}{M_A} = \frac{1}{2}$ 이다. (가)와 (다)에서 삼투압 비는 온도 비와 같으므로 $8P:10P=T_1:T_2=4:5$ 이다.

9. [출제의도] 상평형 그림 자료 분석 및 해석하기

 \bigcirc ~ \bigcirc 은 각각 기체, 고체, 액체이다. P_1 atm에서 A의 끓는점은 t_1 $^{\circ}$ 보다 낮고, A의 삼중점에서 압력은 P_2 atm 보다 높다.

10. [출제의도] 증기 압력과 끓는점의 관계에 대한 가설 설정하기

기준 끓는점이 낮을수록 같은 온도에서 액체의 증기 압력은 크므로 38 < a < 57이다. 기준 끓는점이 X(l) > Y(l)이므로 액체 상태에서 분자 사이의 힘은 X가 Y보다 크다. t° C, 76 cmHg에서 Z의 안정한 상은 기체가 아니다.

11. [출제의도] 용액의 농도 자료 분석하기

용매와 용질의 질량을 각각 W, w라 하면, $(W_{\rm I} + w_{\rm I})$: $w_{\rm I} = 1200~{\rm g}$: $200~{\rm g} = 120~{\rm g}$: $w_{\rm I}$ 이므로 $w_{\mathrm{I}} = 20 \mathrm{g}$ 이다. (나)에서 $w_{\mathrm{I}}: w_{\mathrm{II}}: w_{\mathrm{II}} = 2:1:2$ 이므로 $w_{\, \mathrm{II}} = 10 \,\,\mathrm{g} \,, \,\, w_{\, \mathrm{III}} = 20 \,\,\mathrm{g} \,$ 이다. II에서 용질의 양은 $0.2 \,\,\mathrm{mol}$ 이므로 x=2이다. I과 III의 질량은 각각 120 g, 110 g(=100 mL×1.1 g/mL)이므로 퍼센트 농도는 III이 더 크다. Ⅱ와 Ⅲ을 모두 섞은 수용액의 몰랄 농도는 2 m 보다 작다.

12. [출제의도] 산 염기 평형 결론 도출하기

(가)에서 $K_a = x \times 10^{-4}$ 이므로 x = 0.2이다. (나)에서 0.5x(=0.1) M일 때 [H₃O⁺]=0.1 M이므로 HB는 강산

이다.
$$\frac{(\downarrow)에서 [B^-]}{(7)에서 [A^-]} = \frac{0.1}{2 \times 10^{-3}} = 50$$
이다. (나)에

NaB(s) 0.01 mol = 참가한 수용액은 완충 용액이 아니다.

13. [출제의도] 평형 상수와 반응 지수 자료 분석 및 해석하기

	$X_{\mathrm{B}}\!=\!0.5$ 일 때	A(g)	\rightleftharpoons	2B(g)	+	C(g)
	반응 전(mol)	a				
	반응(mol)	-n		+2n		+n
	평형(mol)	a-n		2n		n
따	라서 $n=0.5a$	이고 <i>K</i> =	$=\frac{a^2}{a}$	$\frac{\times 0.5a}{0.5a} =$	a^2	l다.
	$X_{\mathrm{B}}\!=\!0.4$ 일 때	A(g)	\rightleftharpoons	2B(g)	+	C(g)
	반응 전(mol)	a				
	반응(mol)	-m		+2m		+m
	평형(mol)	a-m		2m		m

따라서 $m = \frac{1}{3}a$ 이고, $Q = \frac{2}{9}a^2$ 이다.

14. [출제의도] 증기 압력 내림 자료 분석하기

$$\begin{split} P_{\text{용력}} = & P_{\text{용태}} \times X_{\text{용태}} \circ |\text{코}, \quad \frac{\text{A}(s) \text{의 질량}}{\text{B}(s) \text{의 질량}} = \frac{2}{3} \text{ 일 } \quad \text{때} \\ & \text{A}(s) \text{와 B}(s) 는 각각 4 \text{ g}, \ 6 \text{ g old.} \quad \frac{\frac{w}{18}}{\frac{w}{18} + \frac{4}{60} + \frac{6}{180}} \\ & = \frac{100}{101} \circ |\text{므로} \ w = 180 \, \text{이다.} \ x = \frac{1}{9} \, \text{old.} \end{split}$$

15. [출제의도] 헤스 법칙과 결합 에너지 결론 도출하기

반응 엔탈피가 2x+y-z인 반응은 $2HCl(g) \rightarrow$ $H_2(g) + Cl_2(g)$ 이다. 반응 엔탈피는 $\{(반응물의 결합$ 에너지의 총합)-(생성물의 결합 에너지의 총합)}과 같으므로, 2x+y-z=860-(435+a)=-a+425이다.

16. [출제의도] 기체 반응 실험 설계하기

일정 온도에서 $n \propto PV$ 이므로 (가)에서 $A(g) \sim C(g)$, He(g)의 양(mol)은 각각 2P₁N, 3N, 2P₁N, 3N 이다. (나) 과정 후 He(g)의 부피가 3 L이므로 I과 Ⅱ의 압력은 1 atm이고, $P_1=0.5$ 이다. I에서 B(g)와 C(g) 의 양(mol)은 각각 $\frac{9}{4}N$, $\frac{3}{4}N$ 이다. 따라서 $P_2=0.25$

꼭지 b를 연 후 반응의 양적 관계는 다음과 같다. 반응 전(mol) N

17. [출제의도] 산 염기 평형 자료 분석하기

(7)에서 $A^{-}(aq) + H_2O(l) \rightleftharpoons HA(aq) + OH^{-}(aq)$ $K_{\rm b} = {{\rm [HA][OH^{-}]}\over {\rm [A^{-}]}} = {{10^{-4}} \times 10^{-4}}\over {0.5x}}$ 이고, HA의 $K_{\rm a} =$ $0.5x \times 10^{-6}$ 이다. (나)에서 $0.2 \times 50 = 2x \times 50 \times \frac{1}{2}$ 이다. 따라서 x = 0.2이고, HB의 $K_a = 1 \times 10^{-8}$ 이다.

18. [출제의도] 평형 이동 관련 실험 설계하기

평형	온도	압력	부피	기체의	양(mol)
0 0	(K)	(atm)	(L)	A(g)	B(g)
I	T	1		3n	18n
П	$\frac{4}{3}T$	1	12V	6n	12n
III	$\frac{4}{3}T$	P	25V	$\frac{9}{2}n$	15n

 $ext{I}$ 과 II는 외부 압력이 같<u>ㅇㅁ로</u> $\dfrac{1 imes V_{ ext{I}}}{21n imes T} \!=\! \dfrac{1 imes 12\,V}{18n imes \dfrac{4}{2}\,T}$

이므로 $V_{\rm I}=\frac{21}{2}\,V$ 이다. Π 와 Π 에서 기체의 몰비는 $(1 \times 12 V)$: $(P \times 25 V) = 18$: $\frac{39}{2}$ 이므로 $P = \frac{13}{25}$ 이다. $K_{\mathrm{I}} = \frac{(18n)^2}{3n} \times \frac{2}{21 \, V}, \quad K_{\mathrm{II}} = \frac{(12n)^2}{6n} \times \frac{1}{12 \, V}$

19. [출제의도] 1차 반응 결론 도출하기

 $0 \sim t$ 에서 B(g)의 농도 증가량이 C(g)의 2배이므로 b=2이다. $0\sim t$ 에서 B(g)의 농도 증가량이 1.2, $t \sim 2t$ 에서 $0.3 = 1.2 \times (\frac{1}{2})^2$ 이므로 1차 반응의 반감기는 $\frac{1}{2}t$ 이다. 2t에서 A(g)와 C(g)의 농도 비는 $x \times (\frac{1}{2})^4 : 1.5 \times \frac{1}{2} = 1 : 15$ 이므로, $x = \frac{4}{5}$ 이다. 0~2t에서 A(g)의 농도 감소량과 C(g)의 농도 증가량이 같으므로 a=1이다. $x \times \frac{a}{b} = \frac{2}{5}$ 이다.

20. [출제의도] 1차 반응과 반감기 결론 도출 및

질량 보존 법칙에 따라 (가)에서 반응 시간에 따른 A(g)~C(g)의 질량은 다음과 같다.

(0)		, _ , .	
반응 시간	A(g)	B(g)	C (g)
0	20w	0	0
t s	10w	8w	2w
2t s	5w	12w	3w

분자량 비는 A:B:C = $\frac{10w}{2}$: $\frac{8w}{b}$: $\frac{2w}{1}$ =5: $\frac{8}{b}$:2이고, 반감기는 t s이다. n을 16N이라 하면 (T)에서 반응 시간에 따른 $A(g)\sim C(g)$ 의 양(mol)은 다음과 같다.

16 1 16 -	- (8) - (8)	0(11101)	16 1 6 1.	
반응 시간	A(g)	B(g)	C(g)	
0	16N	0	0	
t s	8N	4bN	4N	
2t s	4N	6bN	6N	

(나)에서 A의 질량을 W라고 하면 반응 시간에 따른 $A(g)\sim C(g)$ 의 질량은 다음과 같다.

반응 시간	A(g)	B(g)	C(g)	
0 W		0	4w	
t s	$\frac{1}{2}W$	$\frac{2}{5}W$	$4w + \frac{1}{10}W$	
2t s	$\frac{1}{4}W$	$\frac{3}{5}W$	$4w + \frac{3}{20} W$	
3t s	$\frac{1}{8}W$	$\frac{7}{10}W$	$4w + \frac{7}{40}W$	

3t s일 때 $\frac{w_{\text{C}}}{w_{\text{A}} + w_{\text{B}}} = \frac{1}{3}$ 이므로 W = 40w이다. 일정한 부피와 온도에서 압력은 기체의 양에 비례 하므로 $\frac{8N+12bN+20N}{8N+4bN+4N}=\frac{13}{5}$ 이고, b=2이다. 따라서 $x = \frac{2}{9}$ 이다.

그러므로 x=2이고, C(g)의 몰 분율은 0.5이다.