• 4교시 과학탐구 영역 •

[화학]]

1	2	2	5	3	3	4	2	5	5
6	3	7	1	8	4	9	(5)	10	(5)
11	3	12	4	13	(5)	14	1	15	2
16	3	17	4	18	1	19	3	20	4

1. [출제의도] 화학 물질이 일상생활에 이용되는 사례 이해하기

□. CH_3COOH 은 물에 녹아 수소 이온을 내놓으므로 $CH_3COOH(aq)$ 은 산성이다. ㄴ. CaO이 물에 녹으면 열이 발생하므로 발열 반응이다. ㄷ. CaO은 탄소 화합물이 아니다.

2. [출제의도] 원자의 구성 입자 이해하기

³₂He⁺에서 양성자는 2개, 중성자는 1개, 전자는 1개 이다. 따라서 ○는 양성자, ○는 중성자, ●는 전자이 다. ³H는 양성자 1개, 중성자 2개, 전자 1개이므로,

3H의 모형으로 가장 적절한 것은

3. [출제의도] 공유 결합과 이온 결합 이해하기

ㄱ. $W \sim Z$ 는 각각 H, C, N, Na이므로 WXY (HCN)는 공유 결합 물질이다. \cup . Z^{n+} 은 Na $^+$ 이므로, n=1이다. \cup . $U \sim Z$ 의 원자가 전자 수는 각각 1, 4, 5, 1이므로, Y가 가장 크다.

4. [출제의도] 원소의 주기적 성질 이해하기

원자가 전자가 느끼는 유효 핵전하는 같은 주기에서 원자 번호가 증가할수록 커지므로, 유효 핵전하가 O보다 큰 원소의 가짓수는 1이다. 제1 이온화 에너지 (E_1) 의 크기는 $Li < B < Be < C < O < N < F 이므로, <math>E_1$ 가 B보다 크고 N보다 작은 원소의 가짓수는 3이다.

5. [출제의도] 전기 음성도와 결합의 극성 이해하기

ㄱ. X, Y는 17족 원소, Z는 16족 원소이다. 또한 전기 음성도는 같은 주기에서 원자 번호가 클수록 크고, 같은 족에서 원자 번호가 클수록 작다. 따라서 $X\sim Z$ 는 각각 Cl, F, O이다. \cup . 전기 음성도는 Y (F)>Z(O)>X(Cl)이다. \cup . $Z_2Y_2(O_2F_2)$ 에는 O 원자 사이에 무극성 공유 결합이 있다.

6. [출제의도] 혼합 용액의 몰 농도 구하기

0.1M의 A(aq) 100mL에 aM A(aq)을 300mL 추가한 (나)는 0.4M이므로 $\frac{0.01$ mol +0.3amol}{0.4L=0.5이다. (가)는 0.1M A(aq) 100mL보다 부피가 2배, 용질의 양이 6배이므로 b=0.3이고, $\frac{b}{a}=\frac{3}{5}$ 이다.

7. [출제의도] 중화 적정 실험 수행하기

ㄱ. 중화 적정 실험에서 플라스크 속 CH_3COOH 을 적정하기 위한 실험 기구로 적절한 것은 뷰렛이다. 나. 중화점에서 CH_3COOH 의 양(mol)과 NaOH의 양(mol)이 같으므로, $\frac{xM\times0.01L}{0.1L}\times0.04L=0.2M$ $\times0.02L$ 이고, x=1이다. 다. \bigcirc 을 200mL로 달리하면 (가)에서 만든 $CH_3COOH(aq)$ 의 농도는 \bigcirc 을 100mL로 만들었을 때의 0.5배가 되므로 V=10mL이다.

8. [출제의도] 화학 반응식 이해하기

반응 후 반응물이 모두 반응하여 남아 있지 않으므로, 화학 반응의 양적 관계(mol)는 다음과 같다.

 $2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(l)$

	2 0 -	2 -	2 -	2
반응 전	1	3.5	0	0
반응	-1	-3.5	+2	+3
반응 후	0	0	2	3

9: V=4.5:2이므로 V=4이고, wg=44g/mol \times 2mol=88g이다. 따라서 $\frac{w}{V}$ =22이다.

9. [출제의도] 용해 평형 이해하기

¬. 물이 담긴 비커에 NaCl(s)을 넣으면 평형 상태인 3t에 도달하기 전까지 NaCl(s)의 양(mol)은 감소하고, Na⁺(aq)의 양(mol)은 증가한다. 따라서 3t까지 NaCl(s)의양(mol)은 점점 증가하므로 つ<1이다. ㄴ. 2t일 때는 평형 상태에 도달하기 전이므로, NaCl의 용해 속도가 석출 속도보다 크다. ㄷ. 2t일때 NaCl(s)과 Na⁺(aq)의 양은 0.5nmol로 같으므로, 3t일때 NaCl(s)의 양은 0.5nmol보다 작다.

10. [출제의도] 루이스 전자점식 이해하기

ㄱ. $X \sim Z$ 는 각각 Li, F, N이다. ㄴ. $Z_2(N_2)$ 에는 3 중 결합이 있다. ㄷ. 고체 상태에서 전기 전도성은 X (Li)>XY(LiF)이다.

11. [출제의도] 동위 원소와 평균 원자량 이해하기

ㄱ. Y의 평균 원자량은 $m \times \frac{75}{100} + (m+2) \times \frac{25}{100} = m$ $+\frac{1}{2}$ 이다. ㄴ. $^{m+2}$ Y는 m Y보다 중성자수가 2개 많으므로 $^{m+2}$ Y $_2$ 와 m Y $_2$ 의 중성자수 차는 4이다. ㄷ. 존재비율을 a:(b+c)=50:50이라고 가정한 후, b=0이면 X의 평균 원자량은 25, c=0이면 X의 평균 원자량은

24.5이다. X의 평균 원자량이 24.3이므로 a > b + c이다.

12. [출제의도] 금속의 산화와 환원 이해하기

ㄱ, ㄴ. (나)에서의 반응식은 $3A^++B\rightarrow 3A+B^{3+}$ 이 다. 3Nmol의 B가 산화되면 9Nmol의 A가 석출되고, 이때 B(s)는 환원제로 작용한다. ㄷ. (가)~(다)에서 각각 양이온 전하량의 총합은 10N(상댓값)으로 일정하므로 $10N=m\times 5N$ 이고, m=2이다.

13. [출제의도] 바닥상태 전자 배치 이해하기

2, 3주기 $13\sim15$ 쪽 바닥상태 원자의 홀전자 수와 전자가들어 있는 p오비탈수 (α) 는 다음과 같다. 전자가 2개들어 있는 오비탈수

원자	$_5\mathrm{B}$	₆ C	₇ N	13Al	₁₄ Si	₁₅ P
α	$\frac{1}{2}$	$\frac{2}{2}$	$\frac{3}{2}$	$\frac{4}{6}$	$\frac{5}{6}$	$\frac{6}{6}$
홀전자 수	1	2	3	1	2	3

¬. X~Z는 각각 AI, Si, C이고, ⑤=1이다. ∟. 원 자 번호는 Y(Si)가 가장 크다. ㄷ. 원자 반지름은 X(AI)>Z(C)이다.

14. [출제의도] 분자의 구조와 성질 이해하기

ㄱ, ㄴ. X~Z는 각각 O, F, C이므로, (가)는 CIFO, (나)는 COCl₂, (다)는 CCl₃F이다. 따라서 (가)의 분자 모양은 굽은 형이다. ㄷ. 비공유 전자쌍수는 (나), (다)에서 각각 8, 12이다.

15. [출제의도] 몰과 부피, 분자량 이해하기

 N_2O_2 의 분자량(60)이 NO_2 의 분자량(46)보다 크고, N_2O 의 분자량(44)보다도 크므로, 1g당 전체 분자수는 (나)>(가)이다. 따라서 ①은 3N, ①은 4N이다. (가) 속 기체의 양을 $n \mod$, (나) 속 전체 기체의 양을 $2n \mod$, NO_2 의 양을 $x \mod$ 이라고 하면, $\frac{n}{60 \times n} : \frac{2n}{46 \times x + 44 \times (2n-x)} = 3:4$ 이고, n = x이다. 따

라서
$$\frac{(\cdot \cdot)$$
 속 $\mathrm{N_2O}(g)$ 의 절량 $=\frac{44 \times n}{60 \times n} = \frac{11}{15}$ 이다.

16. [출제의도] 바닥상태 전자 배치와 양자수 이해하기

 $_{13}$ Al의 바닥상태 전자 배치는 $1s^22s^22p^63s^23p^1$ 이므로 n=3인 오비탈에 들어 있는 전자 수가 3이고, l=0인 오비탈에 들어 있는 전자 수가 6이다. 따라서 x+y=3이다.

17. [출제의도] 산화수 변화로 화학 반응식 완성하기

Cr과 Cl의 산화수 변화는 각각 $+3\rightarrow +6$, $+1\rightarrow 0$ 이 고, 화학 반응에서 증가한 산화수의 총합과 감소한 산화수의 총합이 같아야 하므로 3a=b이다. $a=n,\ b=3n$ 이라 할 때, 반응물과 생성물에서 전하량의 총합은 같으므로 (-n)-3n=(-2n)-f이고, f=2n이다. 따라서 $\frac{f}{a+b}=\frac{2n}{n+3n}=\frac{1}{2}$ 이다.

18. [출제의도] 물의 자동 이온화와 pH 이해하기

19. [출제의도] 화학 반응식의 양적 관계 이해하기

I, II에서 반응 후 생성된 C(g)의 질량은 22wg으로 같기 때문에, I, II에서 반응한 물질의 양(mol)은 같다. 따라서 I에서는 B가 모두 반응했고, II에서는 A가 모두 반응했다. A 7wg을 amol, B 8wg을 bmol이라고 하면 반응의 양적 관계(mol)는 다음과 같다.

 \blacksquare 에서 A가 모두 반응하므로 a-b=0이고 a=b이다. 반응 후 $\frac{\text{남아 있는 반응물의 양(mol)}}{\text{전체 기체의 부피(L)}}$ 은 $\frac{a}{a+2xa}$:

 $\frac{2a}{2a+2xa}$ =3:5이므로 x=2이다. 반응 전후 질량은 보존되므로 생성된 D는 9wg이다. B, D의 분자량을 각각 $M_{\rm B}$, $M_{\rm D}$ 라고 하면 B와 D의 반응 몰비는 3:2

이므로 $\frac{24w}{M_{\rm B}}$: $\frac{9w}{M_{\rm D}}$ = 3:2이고, $\frac{M_{\rm B}}{M_{\rm D}}$ = $\frac{16}{9}$ 이다. 따라서 $x \times \frac{{\rm B}$ 의 분자량 = $\frac{32}{9}$ 이다.

20. [출제의도] 중화 반응의 양적 관계 이해하기

중장 이제	이온의 양(mmol)						
혼합 용액	H +	Α-	В ²⁺	OH-			
(가)	40a - 20b	40a	10b	0			
(나)	0	30a	10b	20 <i>b</i> –30 <i>a</i>			

(가)는 산성이므로 (가)에 가장 많이 존재하는 이온은 A^- 이고, 40a-20b>0이므로 2a>b이다. 따라서 (나)에서 B^{2+} 은 20ammol보다 작고, OH^- 은 10ammol보다 작으므로 (나)에 가장 많이 존재하는 이온은 A^- 이다. $\frac{H^+ \text{ 또는 }OH^- \text{의 \mathfrak{G}}(\text{mol})}{\text{가장 많이 존재하는 }O\text{온의 \mathfrak{G}}(\text{mol})} \overset{\bullet}{\sim} 0$

(가):(나)= $\frac{40a-20b}{40a}$: $\frac{20b-30a}{30a}$ =3:2이므로, 5a=3b이 고, $\frac{b}{a} = \frac{5}{3}$ 이다.